
1

Automatic Fairness Testing of Neural Classifiers
through Adversarial Sampling

Peixin Zhang, Jingyi Wang, Jun Sun, Xinyu Wang, Guoliang Dong,
Xingen Wang, Ting Dai and Jin Song Dong

Abstract—Although deep learning has demonstrated astonishing performance in many applications, there are still concerns about its
dependability. One desirable property of deep learning applications with societal impact is fairness (i.e., non-discrimination).
Unfortunately, discrimination might be intrinsically embedded into the models due to the discrimination in the training data. As a
countermeasure, fairness testing systemically identifies discriminatory samples, which can be used to retrain the model and improve
the model’s fairness. Existing fairness testing approaches however have two major limitations. Firstly, they only work well on traditional
machine learning models and have poor performance (e.g., effectiveness and efficiency) on deep learning models. Secondly, they only
work on simple structured (e.g., tabular) data and are not applicable for domains such as text. In this work, we bridge the gap by
proposing a scalable and effective approach for systematically searching for discriminatory samples while extending existing fairness
testing approaches to address a more challenging domain, i.e., text classification. Compared with state-of-the-art methods, our
approach only employs lightweight procedures like gradient computation and clustering, which is significantly more scalable and
effective. Experimental results show that on average, our approach explores the search space much more effectively (9.62 and 2.38
times more than the state-of-the-art methods respectively on tabular and text datasets) and generates much more discriminatory
samples (24.95 and 2.68 times) within a same reasonable time. Moreover, the retrained models reduce discrimination by 57.2% and
60.2% respectively on average.

Index Terms—Deep learning, fairness testing, individual discrimination, gradient

F

1 INTRODUCTION

IN recent years, deep learning (DL) has been applied
to various areas of our daily life, e.g., face recogni-

tion [1], fraud detection [2], and natural language processing
(NLP) [3]. As DL is increasingly connected with our society,
we cannot simply regard it as a mathematical abstraction,
but rather as a society-technical system [4]. In other words,
besides testing the accuracy (i.e., a quantification for eval-
uating the effectiveness of mathematical approximation)
of the DL model, we also need to take ethical proper-
ties into consideration. Among them, fairness (i.e., non-
discrimination) is one of the properties that raise the most
heightened public concern [5], especially in minority and
vulnerable groups. In [6], Tramer et al. demonstrated that
the existing discrimination in our society may be present in
the training data and learned by DL models unintentionally.
Worse yet, discrimination in DL is often more ‘hidden’ than
that of traditional decision-making software since it is still
an open problem on how to interpret DL models. Therefore,
it is crucial to have systematic methods for automatically
identifying discrimination in DL systems.

• Peixin Zhang is with Zhejiang University, P.R. China. E-mail:
pxzhang94@zju.edu.cn

• The corresponding authors Jingyi Wang, Xinyu Wang are with Zhejiang
University, P.R. China. E-mail: wangjyee,wangxinyu@zju.edu.cn

• Jun Sun is with Singapore Management University, Singapore. E-mail:
junsun@smu.edu.sg

• Guoliang Dong, Xingen Wang are with Zhejiang University, P.R. China.
E-mail: dgl-prc,newroot@zju.edu.cn

• Ting Dai is with Huawei International Pte. Ltd., P.R.China. E-mail:
daiting2@huawei.com

• Jin Song Dong is with National University of Singapore, Singapore. E-
mail: dcsdjs@nus.edu.sg

Various forms of discrimination exist in the machine
learning literature, including group discrimination [7], [8]
and individual discrimination [9], [10]. Discrimination is
often defined over a set of protected attributes1, such as age,
race and gender. Intuitively, discrimination happens when
a machine learning model makes different decisions for
different individuals (individual discrimination) or subgroups
(group discrimination) differentiated only by protected at-
tributes. Note that the set of protected attributes is often
application-dependent and given in advance. We refer the
readers to [11] for detailed definitions of fairness.

In this work, we focus on the problem of individual
discrimination and aim to develop a systematic and scalable
approach for identifying/generating discriminatory sam-
ples for DL models, i.e., a pair of samples that differ only
by some protected features but have different labels. Note
that in a given DL model, it is often inadequate to identify
a few samples demonstrating the existence of individual
discrimination. Instead, we need to generate as many dis-
crimitive samples as possible and use them to improve the
fairness (i.e., mitigate the discrimination) of the DL model
by retraining. In the software engineering literature, there
have been multiple attempts on the problem [12], [13], [14].
For instance, THEMIS [12] randomly samples each attribute
within its domain and identifies those discriminative sam-
ples. AEQUITAS [13] improves the testing effectiveness
with a two-phase (global and local) search. SG [14] combines
the local explanation model [15] and symbolic execution [16]

1. We use ‘protected’/‘sensitive’ and ‘attribute’/‘feature’ inter-
changeably.

2

Raw Data

Discriminatory
Samples

Global Generation

Local Generation

Discriminatory
Samples

Gradient

Fig. 1. An overview of ADF .

to increase the diversity and the number of discriminatory
samples.

Existing approaches are developed mostly for traditional
machine learning models, i.e., logistic regression, support
vector machine, and decision tree. Although they could be
applied to DL models, experiment results show that their
performance on DL models is far worse than that on tradi-
tional models, and are far from being practical. We discuss
the detailed shortcomings for each approach in Section 4.3.
Besides, the aforementioned algorithms only work on sim-
ple tabular data and are not applicable to complex data
formats (e.g., text for NLP tasks). The difficulty is two-fold.
Firstly, the features of most tabular data are well-designed
and relatively independent from each other, which allows
approaches such as THEMIS and AEQUITAS to generate
new values independently for each feature. For text, each
token (i.e., word or punctuation) is tightly embedded in its
context. As a result, the discriminatory samples generated
by THEMIS and AEQUITAS (if they manage to work) would
unlikely be valid. Secondly, the text for NLP models is of-
ten pre-processed through an embedding procedure, which
converts tokens to distributed and non-continuous vectors.
Such vector inputs further make constraint solving based
approaches such as SG inapplicable since it is challenging to
solve constraints on such vectors.

To address the challenges, we propose a novel
scalable gradient-based algorithm named Adversarial
Discrimination Finder (ADF) for generating discrimitive
samples, which is specifically designed for DL models. The
gradient is an effective tool to craft test inputs for DL
models. It can be calculated efficiently and offers intuitive
guidance on how a model’s outcome changes with respect
to certain attributes. It is proved to be useful in various
DL-related tasks. It is noticeably utilized in recent works
to generate adversarial samples [17], [18], [19], [20], [21], i.e.,
samples which are only slightly different from a given one in
the training set yet result in very different model prediction.

Inspired by these works, we use the gradient as an effective
way for searching discrimitive samples.

An overview of ADF is presented in Figure 1. ADF
has two phases, i.e., global generation and local generation.
The goal of the global generation is to increase diversity
in the generated discriminatory samples. During the global
stage, ADF selects samples in the raw dataset and uses the
gradients to guide the search of discriminatory samples, by
maximizing the difference between the model predictions
of two similar samples. Then local generation takes these
identified discriminatory samples as seeds to acquire more
discriminatory samples by exploring their neighbors. Here,
ADF utilizes the gradient in a different way to identify
discriminatory samples which are minimally different from
the seeds while maintaining their models’ outputs. Note that
ADF is generative, i.e., it may generate samples that are not
in the original dataset. In order to make sure the generated
samples are valid, we utilize a clip function on tabular
datasets and semantically similar words on text datasets in
both global and local generation phases.

ADF has been implemented as in a self-contained toolkit.
Our experiments on 22 real-word benchmarks (including
both tabular and text datasets) show that ADF signficantly
outperforms the baseline methods. For tabular data, ADF
explores 8 times more input space and generates 24 times
more discriminatory samples on average than AEQUITAS.
Comparing with SG, ADF has an average of 324% and
32% higher success rate in global generation and local
generation. Furthermore, ADF is around 2 and 7 times
more efficient than AEQUITAS and SG. For text data, ADF
generates 2.68 times discriminatory samples and has a 9.01%
more success rate than random perturbation on average
within a same reasonable time.

In summary, we make the following contributions.

• We propose a systematic and scalable algorithm ADF
for generating discriminatory samples of DL models
efficiently and effectively based on gradient.

• We address the challenges of applying fairness test-
ing for complex data format (beyond tabular data),
i.e., text.

• We evaluate ADF with 22 benchmarks on 5 datasets
(including 3 tabular datasets and 2 text datasets). Our
experiment shows ADF is significantly more effective
and efficient in generating discriminatory samples
than state-of-the-art methods, e.g., AEQUITAS [13]
and Symbolic Generation [14].

• We implement and publish ADF as an online end-
to-end service [22] to improve the fairness of DL
models.

This paper is an extension of our previous publica-
tion [23] by applying the original idea of ADF to a much
more challenging domain, i.e., text. In particular, we present
the difficulties of why existing fairness testing approaches
are infeasible for text and our approaches to address the
challenges. We also provide several additional running
examples and much more extensive experiments on text
datasets to demonstrate the effectiveness of our approaches.

We organize the rest of the paper as follows. We first pro-
vide the background of DL and gradient-based adversarial
attacks in Section 2. We present the details of the ADF in

3

Section 4. In Section 5, we evaluate our approach on mul-
tiple real-world datasets and demonstrate its effectiveness
and efficiency. We review the related works in Section 6.
Finally, in Section 7, we conclude our work and discuss the
potential future directions.

2 PRELIMINARY

In this section, we review relevant background.

2.1 Deep Learning
We target two kinds of commonly used DL models, i.e.,
Feedforward Neural Network (FNN) and Recurrent Neural
Network (RNN).
FNN A FNN contains an input layer, an output layer,
and multiple hidden layers. We denote these layers as
L = {Lj |j ∈ {0, . . . , J}}, and the j-th layer are consisted
of |Lj | neurons. A FNN computes the outcome of each
neuron by applying activation function (e.g., Sigmoid, tanh,
or relu [24]) φ to the weighted sum of the outputs of all the
neurons in its previous layer.
RNN RNN is a variant of the traditional neural network,
e.g., FNN, which is designed for modeling sequential data.
An RNN takes a sequence x = x0x1 · · ·xn as input and
produces a sequence o = o0o1 · · · om as output. We use
x[i] to denote the i-th element of x and |x| to denote the
length of x. RNN ‘memorizes’ what has been calculated so
far through a set of hidden states H . At each time step t, the
current hidden state ht and the output ot are calculated as
follows.

• xt is the input at time t.
• ht is the hidden state (which is also known as the

memory unit) at time t. It can be calculated based on
the last hidden state and the current input: ht = φ(U ·
xt +W · ht−1), where φ is the activation function, U
and W are the weights of current input and previous
state respectively. Specifically, h−1 is initialized to be
0 for calculating the first hidden state.

• ot is the output at time t which is obtained by ot =
ψ(V ·ht), where ψ is normally a Softmax function, V
is the weight of the current hidden state.

In this work, we focus on DL classifier D : X → Y , i.e.,
for a given sample x ∈ X , a DL model outputs a predicted
label y ∈ Y which has the highest probability. Note that we
use θ to denote the set of its parameters.

2.2 DL Ethics
Given that DL models are increasingly applied in applica-
tions with significant societal impact, they must act follow-
ing the formal (i.e., Law) and informal norms (i.e., Ethics)
held for human beings. In other words, in addition to
improving the accuracy of the models, we hope to develop
Trustworthy AI, since only when human beings trust AI, can
they harvest the benefits of this technology confidently and
adequately.

The High-level Expert Group on Artificial Intelligence
(AI HLEG) of the European Commission lists 10 funda-
mental requirements of Trustworthy AI [5], e.g., robustness
requires DL models to handle errors or inconsistencies in its

life cycle [17], [19], [20], [25], [26], [27]; transparency aims to
help developers and users better understand the logic and
reasons in the decision-making process [15], [28]; and privacy
ensures that all personal information used and generated
in the intersection between users and DL models are not
leaked [29], [30]. In addition, fairness (non-discrimination) is a
new research hotspot in the field of AI ethical principles in
recent years, which attempts to avoid DL models that inten-
tionally or unintentionally marginalize certain minorities.

So far, there is no commonly agreed definition of fair-
ness, despite that many definitions have been proposed in
the literature, e.g., Demographic Parity and Equalised Odds.
In this work, we focus on individual fairness, i.e., given
two samples that only differ by the protected attributes, a
model must output the same label. The formal definition of
individual fairness is in the next section.

2.3 Individual Discrimination

We denote X as a dataset and its set of elements by
E = {E1, E2, . . . , En}, i.e., an element is an attribute for
tabular data and a token for text data. Assuming each
element Ei has a valuation domain Ii, the input domain
is then I = I1 × I2 × . . .× In, which denotes all the possible
combinations of element valuations. Note that given an
unknown sample, n is a constant and each attribute has its
own domain for tabular data, whereas for text data, n varies
with inputs and the input space is the entire corpus. Further,
we use P ⊂ A to denote a set of protected attributes like
race and gender and NP to denote the set of non-protected
attributes. It is easy to obtain the protected attributes and
their value domains for tabular data. However, for the
text, we need to identify a list of features that are often
associated with fairness issues as protected attributes and
define the value domain for each one manually. For instance,
one of the protected attributes is ‘country’ and it has 160
possible values. Note that this is a one-time effort that
is manageable and reusable. The details of the identified
protected attributes and their value domains are available
at [22]. A DL model D trained on X may contain individual
discrimination which is defined as follows.

Definition 2.1. Let x = {x1, x2, . . . , xn}, where xi is the
value of attribute Ai be an arbitrary sample in I. We say that
x is a discriminatory sample of a model D if there exists
another data sample x′ ∈ I which satisfies the following
conditions:

• ∃p ∈ P, s.t., xp 6= x′p;
• ∀q ∈ NP, xq = x′q ;
• D(x) 6= D(x′)

Further, (x, x′) is called a discriminatory sample pair.

2.4 Gradient-based Adversarial Attack

In [31], Szegedy et al. demonstrated that DL models are
vulnerable to adversarial samples, which are crafted by
introducing perturbations on the original normal samples
to mislead the decisions of the model. Various kinds of
adversarial attacks have been proposed in the past few
years [17], [18], [19], [20], [21], [32], and gradient-based
methods are one of the fastest and most straightforward

4

ways. The gradient of the prediction y with respect to the
input x is defined as:

G(x, y) =
∂J(θ, x, y)

∂x
(1)

where J could be any objective function related with the
output, e.g., the loss function [17], [18], [20], [33], the logits
(i.e., the input values of the last softmax layer) [19], [34].
In the following, we briefly introduce two representative
gradient-based adversarial attacks for tabular data and text
data.

FGSM In [17], Goodfellow et al. proposed Fast Gradient
Sign Method (FGSM) which perturbs the original input in
the direction of the sign of the gradient of the model’s loss
function with respect to the input attributes according to the
following Equation:

xadv = x+ ε · sign(G(x, y)), (2)

where ε is a hyper-parameter to determine the perturbation
degree.

ASC In [19], Papernot et al. proposed Adversarial Sequence
Craft (ASC) which iteratively replaces an attribute with a
substitute value that impacts the model’s outcome signifi-
cantly until success or timeout. In other words, it chooses
the value with the closest direction (i.e., the sign of the
difference between it and the original value) to the one
indicated by the gradient.

HotFlip In [25], Ebrahimi et al. proposed a white-box ad-
versarial attack method named HotFlip, which estimates
the impact of each flip operation on one-hot input by the
gradient, and utilizes the beam search to find the best
perturbation with the highest loss.

2.5 Problem Definition

A model which suffers from individual discrimination may
produce prejudiced decisions when a discriminatory sam-
ple is presented as input. Our problem is thus defined as
follows. Given a dataset X , a set of protected attributes P
and a DL model D, how can we effectively and efficiently
generate discriminatory samples forD so that we can retrain
a DL model based on X and the generated discriminatory
samples for more fair models? This problem is challenging
because we focus on complex DL models which renders
existing methods ineffective.

3 OVERVIEW

In this section, we present the pipeline of global and local
generation of our method ADF in Figure 2(a) and 2(b)
respectively and utilize a toy example to explain the relevant
notations.

Figure 3 depicts a one-layer FNN without activation
function for a sensitive classification task. The input vector
is [x0, x1, x2] (shown in blue), where all of them have con-
tinuous integer values and x2 is the only protected attribute
with two possible values, 0 and 1. y0 and y1 (shown in red)
denote the output nodes. Besides, each value in the figure
represents the corresponding weight between two linked
neurons.

Gradient
Calculation

Attribute
Selection

Global
Perturbation

Data
Selection

Discrimination
Check

Not found and
iter <= max_iterFound

Discriminatory
Samples

Raw Data

(a) Global Generation

Gradient
Calculation

Attribute
Selection

Local
Perturbation

Discrimination
Check

Discriminatory
Samples

Discriminatory
Samples

Found

(b) Local Generation

Fig. 2. The pipeline of ADF .

x2

y0

x0

x1
y1

0.5

-0
.3

0.3

0.5

0.3

0.2

0.6

0.5

0.8
1.0

Fig. 3. Toy example of FNN without activation function.

In the global phase, we first select seeds to search as
many different parts of the input space as possible, e.g.,
[0, 1, 0]. Next, we follow Definition 2.1 to check if the output
(y0) of the seed is consistent when we only flip the sensitive
attribute x2. Since gradient indicates the direction and mag-
nitude of the output change with respect to the perturbation
on the input [17], we use gradient calculated according to
the chain rule, e.g., ∂y0/∂x0 = 0.5 ∗ 0.5 + 1.0 ∗ 0.2 = 0.45,
to search for discriminatory samples more efficiently. Then
we select the non-protected attribute(s) and perturb them by
gradient, e.g., we choose the attribute x0 (with larger gradi-
ent) and apply x0 = x0 + 1∗ sign(0.45), to acquire a sample
that is more likely discriminatory. The new sample [1, 1, 0] is
used to start the next iteration. The global generation stops if
a discriminatory sample is successfully generated or it times
out.

In the local phase, we further search the neighborhood of
identified discriminatory samples to increase the quantity.
Here, the gradient is computed to guide the selection of
non-protected attribute(s) and perturbation to ensure that
the search space is as close to the existing discriminatory
sample as possible. Last, we check whether the new sample
is discriminatory according to Definition 2.1.

4 METHODOLOGY

In this section, we first present details of our approach ADF
and then a qualitative comparison between our approach
and state-of-the-art fairness testing approaches.

ADF generates discriminatory samples in two phases,
i.e., a global generation phase and a local generation phase.
In the global generation phase, we aim to identify those
discriminatory samples near the decision boundary from

5

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many several of the
terms related to Gypsies and African Americans
are clearly fabricated by some racist individual
with too much time on their hands.

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many of the terms
related to Jews Gypsies and African Americans
are clearly fabricated by some racist individual
with too much time on their hands.

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many of the terms
related to Jews and African Americans are
clearly fabricated by some racist individual with
too much time on their hands.

==Emilia== Do you find more information about
this Swedish diva? If you do so, help complete
this article!

(a) Original sample

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many several of the
terms related to Gypsies and African Americans
are clearly fabricated by some racist individual
with too much time on their hands.

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many of the terms
related to Jews Gypsies and African Americans
are clearly fabricated by some racist individual
with too much time on their hands.

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many of the terms
related to Jews and African Americans are
clearly fabricated by some racist individual with
too much time on their hands.

==Emilia== Do you find more information about
this Swedish diva? If you do so, help complete
this article!

(b) IDS identified by perturbation on non-IDS

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many several of the
terms related to Gypsies and African Americans
are clearly fabricated by some racist individual
with too much time on their hands.

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many of the terms
related to Jews Gypsies and African Americans
are clearly fabricated by some racist individual
with too much time on their hands.

== ???? == This 'list' serves no purpose other
than to provide ammunition for those already
holding racist views. Also, many of the terms
related to Jews and African Americans are
clearly fabricated by some racist individual with
too much time on their hands.

==Emilia== Do you find more information about
this Swedish diva? If you do so, help complete
this article!

(c) IDS identified by perturbation on IDS

Fig. 4. Sample searching results

the original dataset X , which then serve as the seed data
for the local generation phase. In the local generation phase,
we follow the intuition that samples in the neighborhood of
those seed data are more likely to be discriminatory samples
to obtain more of them. Note that this intuition is inspired
by recent research on the robustness of DL models [31],
[35]. In the following, we introduce the two phases in detail
with two running examples (from tabular and text dataset
respectively).

Example 4.1. We use the Census Income dataset2 as a
running example on tabular data to illustrate each step of
our approach. The Census Income dataset is published in
1996, which is a commonly used dataset in the literature
of fairness research [12], [13], [14], [36], [37]. The task is to
predict whether the income of an adult is above 50,000$
based on their personal information. The dataset contains
32,561 training samples with 13 attributes each. The follow-
ing shows a sample x.

x : [4, 0, 6, 6, 0, 1, 2, 1, 1, 0, 0, 40, 100]

Note that all the attributes are category attributes (ob-
tained through binning). Among the 13 attributes, there are
multiple potential protected attributes, i.e., age, race, and
gender. In the following, we assume the protected attribute
is gender for simplicity, whose index in the feature vector
is 8 (which is highlighted in red above). There are only two
different values for this attribute, i.e., 0 representing female
and 1 representing male. Given a model trained on the
dataset, if changing 1 to 0 changes the prediction outcome
by the model, we say that x is a discriminatory sample for
the model.

Example 4.2. We utilize the text dataset Wikipedia Com-
ments3 as a running example on text data. This dataset is
collected from Wikipedia Talk Pages for classification [38].

2. https://archive.ics.uci.edu/ml/datasets/adult
3. https://github.com/conversationai/unintended-ml-bias-analysis

Algorithm 1 Global Generation
1: id g = ∅
2: for i from 0 to num g do
3: Get seed x from X
4: Determine the locations of P
5: for iter from 0 to max iter do
6: if discrimination check(x) then
7: id g = id g ∪ x
8: break
9: end if

10: Xs = {x′|∀x′p ∈ Ip, x′p 6= xp}
11: x′ = arg max{abs(Oy(x′)−Oy(x))|x′ ∈ Xs}
12: g = ∇xJ(θ, x, y)
13: g′ = ∇x′J(θ, x′, y)
14: x = global perturbation(x, grad, grad′)
15: end for
16: end for
17: return id g

The classification task is to label each comment as either
toxic or non-toxic. It was also adopted for measuring dis-
crimination [39], [40]. It has around 127,000 records with an
average length of 81 words. The sensitive features include
religion, country, ethnic and race. Here we assume the
protected attribute is ethnic. Figure 4(a) shows a sample x,
note that the part “==????==” is the heading.

4.1 Global Generation

Algorithm 1 shows the details of the global generation
phase. The algorithm uses the following constants: num g
which is the number of seed samples to generate during
global generation; and max iter which is the number of
maximum iteration.

In the loop from lines 5 to 15, we generate discriminatory
samples iteratively based on the gradient. Let θ be the
parameters of a DL model D; y be the ground-truth label
associated with x; and J(θ, x, y) be the objective function,
e.g., the loss function or the logits. Given a seed x, we
first check whether it is a discriminatory sample according
to Definition 2.1 at line 6. The details are shown in Algo-
rithm 2. Its key idea is to enumerate the value domain of the
protected attributes (see lines 3- 8) and check whether the
model labels the modified sample differently. The sample is
deemed to be a discriminatory sample at line 6 if the label
changes. Note that the complexity of the checking is Θ(N),
where N is the number of all the possible combinations
of the protected features in the corresponding domain. If
x is not a discriminatory sample, we start to search for
discriminatory samples based on x with the guidance of the
gradient defined as ∇xJ(θ, x, y).

Notice that in order to identify a discriminatory sample,
we need to find a discriminatory sample pair, i.e., a pair
of samples that differ only by some protected attributes
and yet have different labels. In other words, given x, we
need to first identify an x′ which only differs from x in
protected attributes. Since x is not a discriminatory sample,
x and x′ thus have the same label. There are two possible
ways of perturbation to obtain discriminatory samples. The
first one (shown in Figure 5(a)) is directly pushing the

6

Algorithm 2 Discrimination Check
1: for each element t in x do
2: if t ∈ Ip then
3: for v in Ip\{t} do
4: Obtain x′ by replacing t in x with v;
5: if D(x) 6= D(x′) then
6: return True
7: end if
8: end for
9: end if

10: end for
11: return False

perturbation region

gradient-guided
perturbation

invalid search found discriminationoriginal input

decision boundary

(a) Adversarial Attack

perturbation region

gradient-guided
perturbation

invalid search found discriminationoriginal input

decision boundary

(b) Fairness Testing

Fig. 5. Intuition of gradient-based approach.

sample x towards the decision boundary by adversarial
attack [17], [18], [19], [20], [25], and then checking whether it
is successful to acquire a discriminatory sample. In this case,
if all possible {x′} are close to x, they will likely cross the
decision boundary together after the perturbation. Thus, the
distance between x and x′ must be considered. As shown in
Figure 5(b), we propose a more fine-grained strategy, which
utilizes gradient information on x and x′ simultaneously to
offer guidance on how to perturb (x, x′) such that we are
most likely to identify a discriminatory sample pair.

We identify a set of samples Xs from I such that x and

Algorithm 3 Global Perturbation (Tabular)
1: Initialize array dir with the same size as A by 0
2: for a ∈ A\P do
3: if sign(ga) = sign(g′a) then
4: dira = sign(ga)
5: end if
6: end for
7: x = x+ dir ∗ s g
8: x = clip(x)
9: return x

Algorithm 4 Clip
1: Let x be the input
2: Let I be the input domain
3: for xi ∈ x do
4: xi = max(xi, Ii.min)
5: xi = min(xi, Ii.max)
6: end for
7: return xi

any sample x′ in Xs only differ in some protected attributes
at line 10. The goal is to perturb (x, x′) such that D(x) 6=
D(x′). Among all samples in Xs, we choose x′ according to
the following equation:

x′ = arg max{abs(Oy(x′)−Oy(x))|∀x′p ∈ Ip, x′p 6= xp}, (3)

where O denotes the output vector of D. The intuition is to
select the sample x′ such that the outputs of the DL model
on x and x′ are maximally different. In such a way, after we
perturb both x and x′, it is more likely that the predicted
labels of x and x′ are different.

Our next step is to perturb x and x′ to generate a
discriminatory sample pair (xid, x

′
id) such that D(xid) 6=

D(x′id). Note that the perturbation introduced to x and
x′ are always the same so as to make sure the pair still
only differ by protected attributes after the perturbation.
In order to minimize the perturbation, we utilize different
strategies on tabular and text data since they have different
characteristics. For tabular data, since the attributes are all
preprocessed as categorized values, the perturbation is done
by increasing or decreasing its value by 1 unit. For text data,
we select the perturbation token among candidates which
are similar to the original one semantically and syntactically.
A perturbation in our context is thus a function of a set of
non-protected attributes which we choose to perturb and a
corresponding selection vector determining the perturbing
direction or token. Formally,

Definition 4.1. Perturbation A perturbation δ on a data
sample x is function δ : I × NP × S → I, where S is the
selection of the perturbation.

Specifically, for tabular data, S is a boolean vector where
1 means increasing the attribute value by 1 and -1 means
decreasing by 1. For text data, S is a substituting token
vector.

Our next question is how to choose the elements and
directions for perturbation. Notice that to better achieve in-
dividual discrimination, we need to maximize the difference

7

Algorithm 5 Global Perturbation (Text, ASC)
1: a = arg maxa∈{A\P} imp(a)
2: C = xa.simlar words
3: xa = arg minc∈C ‖sign(xa − c)− sign(ga)‖
4: return x

between D(xid) and D(x′id) after perturbation. Our goal is
thus:

argmaxδ(x,x′){D(xid)−D(x′id)}, (4)

where xid = δ(x) and x′id = δ(x′). Unfortunately, this
objective can not be directly optimized. Our remedy is
to adopt the idea of the EM algorithm [41] in machine
learning to iteratively optimize it. Similarly, we discuss the
different treatments according to the data type. For the
tabular data, as showed in Algorithm 3, we utilize the
gradient of ∇xJ(θ, x, y) − ∇xJ(θ, x′, y) and select those
attributes which have similar contributions (with the same
sign of gradients) as attributes to perturb. The intuition is
that perturbing these attributes can potentially enlarge the
output difference since ∇xJ(θ, x, y) − ∇xJ(θ, x′, y) equals
0 on them (likely to be local minimum). The parameter s g
at line 7 is the step size of global generation. Notice that in
order to filter out unreal perturbed inputs, we always apply
a Clip function described in Algorithm 4 to make sure that
the value of each attribute after the perturbation is within
its domain (see line 8).

Example 4.3. For our tabular running example, we select
seed sample from the original dataset, then get the first
seed x is as follows (shown in Example 4.1), and it is not
a discriminatory sample.

x : [4, 0, 6, 6, 0, 1, 2, 1, 1, 0, 0, 40, 100]

We identify all samples which differ from the seed only by
protected attributes and then obtain the following x′ which
has the greatest difference in output probability with x.

x′ : [4, 0, 6, 6, 0, 1, 2, 1, 0, 0, 0, 40, 100]

We then determine the perturbation direction based on the
sign of two samples’ gradients as follows.

direction : [0, 1, 0, 0,−1, 1,−1, 0, 1, 0, 0, 1,−1]

Intuitively, 0 means that the corresponding attribute should
not be changed; −1 means that it should be decreased and 1
means that it should be increased (to maximize output dif-
ference). Next, we perturb x accordingly and apply the Clip
function to filter invalid values. The result is the following
sample.

x : [4, 1, 6, 6, 0, 2, 1, 1, 1, 0, 0, 41, 39]

Since the last attribute native-country only has 40 countries
(and value 100 means missing value in the original data), it
is modified to 39 (the maximum value) by the Clip function.
After checking at line 6, it is shown to be a discriminatory
sample.

For models trained on text data, we propose two differ-
ent global generation strategies, both of which are based on
gradient. The first one is inspired by ASC [19] (shown in
Algorithm 5), i.e., to maintain the semantics and syntax, we

Algorithm 6 Global Perturbation (Text, HF)
1: min dif = 0
2: for a ∈ {A\P} do
3: C = xa.simlar words
4: for c ∈ C do
5: dif = |grada · (xa − c)T − grad′a · (x′a − c)T |
6: if dif > min dif then
7: pt = a, sw = c
8: end if
9: end for

10: xpt = sw
11: end for
12: return x

only choose the most impactful token to perturb (see line 1),
instead of perturbing multiple attributes at the same time.
Recall that the tokens in the text are pre-processed by word
embedding, which projects each token to a numerical vector,
i.e., the gradient is calculated with respect to the projected
embedding vectors (instead of the token directly). Formally,
the impact of a non-sensitive token np is measured by

imp(np) = ||abs(gnp − g′np)||∞ (5)

where abs(·) returns the absolute value of ·; and || · ||∞ is
the L∞ norm of a vector ·. After getting the most impactful
token, we replace it with one of its synonyms at line 1.
Among the top-k synonyms, denoted asC , we select the one
which incurs a perturbation whose direction is closest to the
direction indicated by the gradient of x. The intuition is to
push the sample towards the classification boundary along
the gradient so that it is more likely to be a discriminatory
sample.

The other method inherits the key idea of HotFlip [25],
as shown in Algorithm 6. We substitute each word (see
lines 2- 11) to search for the maximum difference in terms
of the outcome change with respect to the input pair x
and x′ (see line 5). Since we use word embedding to pre-
process the input, instead of one-hot representation, it is
inapplicable to choose the best word flip wi → wj based
on gradj − gradi (refer readers to [25] for more details), we
utilize grada ·(xa−c)T to estimate the change of prediction,
where ·T is the transpose function. Notice that since here we
only consider the non-protected tokens, x′a = xa.

Once we determine the perturbation, we apply it on
x and x′ and then check whether the new pair (xid, x

′
id)

is a discriminatory sample pair. If the answer is yes, the
algorithm breaks out immediately (see lines 6-8). Otherwise,
we start another round of perturbation on (xid, x

′
id). This

process may repeat multiple times until it succeeds.

Example 4.4. For our text running example shown in Fig-
ure 4(a), it is also determined to be a non-discriminatory
sample. We thus apply global generation (Algorithm 5) to
acquire a discriminatory sample based on x. We first enu-
merate all samples by systematically replacing the sensitive
word “African” with all other possible values for ethnicity.
Among all texts, we select x′ where ‘African’ is replaced
by ‘Latino’ whose prediction result is maximally different
from the original text. Then we identify the non-sensitive
token “Jews” (highlighted in red) which has the most impact

8

Algorithm 7 Local Generation
1: id l = ∅
2: for x ∈ id g do
3: for i from 0 to num l do
4: Xs = {x′ |∀x′

p ∈ Ip, x
′

p 6= xp}
5: ∃x′ ∈ Xs,D(x) 6= D(x

′
)

6: g = ∇xJ(θ, x, y)
7: g′ = ∇x′J(θ, x′, y)
8: prob = normalization(g, g

′
)

9: Select a ∈ A\P with probability prob
10: x = local perturbation(x, a)
11: if discrimination check(x) then
12: id l = id l ∪ x
13: end if
14: end for
15: end for
16: return l id

on the prediction result according to the gradients. Next,
we replace “Jews” with the top-10 synonyms in the given
dictionary, which are Jewish, Christians, Nazis, Catholics, Mus-
lims, Arabs, Jew, Germans, Gypsies, and Orthodox. “Gypsies” is
chosen to replace “Jews” according to the above discussion.
The resultant text is shown in Figure 4(b) is a discriminatory
sample.

4.2 Local Generation

After the global generation phase, we obtain a set of discrim-
inatory samples as seeds for the local generation phase. The
goal of the local generation phase is to generate as many
discriminatory samples as possible based on the seeds,
which are useful for re-training the DL model. The intuition
behind the design of the local generation is that a well-
trained DL model is likely robust, i.e., if two samples are
similar, the same prediction is likely to be produced by the
DL model. We thus are likely to find more discriminatory
samples around a given seed discriminatory sample.

Our local generation algorithm has the following pa-
rameters: num l which is the number of trials in the local
generation. The algorithm makes use of the gradients of the
objective function (see lines 6-7) in a different way. Recall
that in the global generation, we would like to maximally
change the output of the DL model. On the contrary, in the
local generation, we would like to minimally change the
output, as our goal is to maintain the DL model’s outputs
of the discriminatory sample pairs identified in the global
generation so that they remain different. We thus choose to
perturb those attributes which have the least impact on the
output. Note that the absolute value of gradient represents
how much an attribute contributes to the outcome.

Further note that since we are perturbing a discrimina-
tory sample pair, we need to consider the two inputs at
the same time (to make sure that neither of them crosses
the decision boundary as otherwise, they are no longer a
discriminatory sample pair). To achieve that, we adopt a
normalization process on the gradients on the two inputs
to measure the average contribution of each attribute on
the input pair. The details are shown in Algorithm 8. We
first add the absolute value of two gradients together to

Algorithm 8 Normalization
1: Initialize gradient with the same size of g
2: for i from 0 to gradient.length do
3: saliency = ‖abs(gi)‖∞ + ‖abs(g′i)‖∞
4: gradienti = 1.0/saliency
5: if Ai ∈ P then
6: gradienti = 0
7: end if
8: end for
9: gradient sum = sum(gradient)

10: probability = {gd/gradient sum|∀gd ∈ gradient}
11: return probability

Algorithm 9 Local Perturbation (Tabular)
1: Select d ∈ [1,−1] with probability [0.5, 0.5]
2: xa = xa + d× s l
3: x = clip(x)
4: return x

get the saliency value of each element (see line 3). Recall
that in the case of text data, the gradient with regard to the
token is a vector, thus we take the L∞ norm of it as impact.
Then we calculate the reciprocal value (see line 4) since we
aim to select the element with fewer contributions to the
output and meanwhile filter out the protected attributes (see
lines 5-7). Lastly, we use a standard normalization function
to get the contribution of each attribute on the input pair
(see lines 9-10).

Algorithm 7 shows the details of our local generation
algorithm. Given a discriminatory sample pair (x, x′) (see
line 5), we start searching by iteratively selecting the at-
tribute to perturb using the normalization of gradients (see
line 8). Instead of modifying the chosen element based on
the gradient, we randomly select the perturbation direction
(see Algorithm 9) and substituting word (see Algorithm 10)
for tabular and text data respectively with the uniform
probability. Similar to global generation, we also utilize
application-specific strategies (i.e., Clip for tabular and sim-
ilar words for text) to make sure that the generated test case
is valid. We check whether the input after the perturbation
is a discriminatory sample (see line 11) and continue to the
next seed input if the answer is yes. Otherwise, we start
another iteration of the local generation (see line 3).

Example 4.5. For our tabular running example, the global
generation phase generates the following discriminatory
sample pair.

x : [4, 1, 6, 6, 0, 2, 1, 1, 1, 0, 0, 41, 39]

x′ : [4, 1, 6, 6, 0, 2, 1, 1, 0, 0, 0, 41, 39]

In the local generation, taking this pair as input, we first
calculate the gradient of these two samples and normalize
the sum of them as individual probability. The result is as
follows.

probablity : [0.030, 0.019, 0.057, 0.075, 0.002, 0.009,

0.020, 0.015, 0, 0.002, 0.027, 0.612, 0.131]

9

Algorithm 10 Local Perturbation (Text)
1: C = xa.simlar words
2: Select c ∈ C with the same probability 1.0/C.length
3: xa = c
4: return x

Based on the above probability, we choose the attribute
hours-per-week (with index 11) and the direction -1 for per-
turbation. Since the result sample’s values are all within the
respective domains, the Clip function keeps it the same and
the following sample is identified as a new discriminatory
sample.

x : [4, 1, 6, 6, 0, 2, 1, 1, 1, 0, 0, 40, 39]

Example 4.6. For our text running example, we apply local
generation to search for more discriminatory samples on
the neighbor of the identified one (shown in Figure 4(b)).
We first obtain the probability distribution based on the
normalization of their gradients and randomly select the
token “many” to perturb. Note that this token has little
impact on the prediction result. Next, we obtain its top-10
synonyms and randomly replace “many” using “several”.
The resultant text is shown in Figure 4(c), which turns out
to be a discriminatory sample.

4.3 Qualitative Evaluation
In the following, we evaluate our approach qualitatively by
comparing it with state-of-the-art approaches, i.e., THEMIS
[12], AEQUITAS [13], and Symbolic Generation (SG) [14].
Empirical comparison results are presented in Section 5.

THEMIS [12] explores the input domains for all at-
tributes through random sampling and then checks whether
the generated samples are discriminatory samples. AE-
QUITAS [13] improves THEMIS by adopting a two-phase
generation framework. In the first phase, AEQUITAS ran-
domly generates a set of discriminatory samples in the input
space as seeds. In the second phase, AEQUITAS searches
for more discriminatory samples around the seed inputs
found in the first phase by randomly adding perturbations
on the non-protected attributes. Notice that the perturbation
is guided by a distribution that describes the probabil-
ity of finding a discriminatory sample by adding pertur-
bation on a specific non-protected attribute. Despite that
random sampling is lightweight, THEMIS and AEQUITAS
can miss many combinations of non-protected attributes’
values where individual discrimination may exist [14]. The
recent work SG [14] attempts to solve this problem by
systematically exploring the input space through symbolic
execution. The idea is to first adopt a local model explainer
like LIME [15] to construct a decision tree for approximating
the machine learning model. The result is a decision tree
constituted with linear constraints such that a linear path
constraint is associated with any given input. Then, SG
iteratively selects (according to a ranking function), negates
the constraints, and uses a symbolic execution solver to
generate test cases according to different path constraints.

To summarize the difference between existing ap-
proaches and ours, we differentiate them using three cri-
teria, i.e., whether the search (for discriminatory samples)
is guided, whether the guided search is specific for an

TABLE 1
Comparing different approaches

Feature THEMIS AEQUITAS SG ADF
Guided 7 X(semi) X X

Input specific N.A. 7 X X
Lightweight X X 7 X

individual input (input-specific), and whether the procedure
adopted is light-weight (and thus likely scalable). Table 1
shows the summary. Except for THEMIS, both AEQUITAS
and SG generate discriminatory samples in a guided way
(either by a distribution or a path constraint). The difference
is that AEQUITAS uses a single distribution for all the
inputs while SG generates path constraints depending on
different inputs. We remark that designing input-specific
perturbations is a more robust way to generate individ-
ual discrimination for different kinds of input and thus
is important because it is crucial for removing individual
discrimination globally. Lastly, we expect that approaches
based on random sampling like THEMIS and AEQUITAS
are lightweight while SG is a relatively heavy approach that
requires the help of a local model explainer and a symbolic
execution solver. For the former, it is still an open problem
on generating model explainers in a scalable and accurate
way. For the latter, symbolic execution is known to be less
scalable than techniques like random samples. Besides, the
above limitations also make these methods unsuitable for
text application since it is challenging to obtain valid texts
by randomly selecting words. For SG, it is impractical to
solve the constraint after the embedding procedure.

Compared to existing approaches, our approach satisfies
all three criteria. First, our search is guided by gradient, i.e.,
the perturbation is guided towards the decision boundary
to accelerate the discovery of discriminatory samples which
significantly reduces the number of attempts needed. The
intuition is visualized in Figure 5. Second, our algorithm
generates a specific gradient-guided search for different
inputs, which significantly improves the success rate of
individual discrimination generation. Lastly, our approach
is lightweight since obtaining the gradient of DL models
with respect to a given input is cheap which only requires a
backpropagation process and is supported by all existing
standard deep learning frameworks like Tensorflow [42],
PyTorch, and Keras. And ADF is easy to be implemented
on text data, as no matter on global or local generation
phase, it selects the perturbed token and substitutes word
only guided by gradients.

Similar to AEQUITAS, our approach also has a global
search phase and a local search phase. The differences are
in the details of both phases. AEQUITAS works by actively
maintaining a probability distribution t : NP → [0, 1] on
NP which represents how likely perturbing an attribute in
NP is likely to successfully generate individual discrimina-
tory samples. A limitation of such an approach is that differ-
ent attributes of different inputs may contribute differently
to the DNN output and the same global distribution hardly
works for all the inputs. This is clearly evidenced by our
experiment results in Section 5. To solve the problem, our
approach takes an input-specific perspective, i.e., choosing
different local perturbations based on the gradient which is

10

TABLE 2
Configuration of experiments.

Parameter Value Description
max iter 10 max. iteration of global generation

s g 1.0 step size of global generation
s l 1.0 step size of local generation
k 10 the number of similar words for choosing

specific to a given sample.

5 EXPERIMENT

We have implemented ADF as a self-contained toolkit based
on Tensorflow [42] and Gensim [43]. Its source code, to-
gether with all the experiment-related details, is available
online [22]. In the following, we evaluate ADF to answer 4
research questions (RQ).

5.1 Experimental Setup
For the tabular data, we choose AEQUITAS and SG for
baseline comparison. Note that THEMIS is shown to be
significantly less effective [14] and thus is omitted for com-
parison. We obtained the implementation of AEQUITAS
from GitHub4 and re-implemented SG according to the
description in [14] since their implementation is not publicly
available. Further notice that AEQUITAS proposed 3 differ-
ent local search algorithms, we adopted the fully-directed
algorithm in our evaluation since it has the best performance
according to [13]. However, for text classification tasks, as all
existing fairness testing approaches are specifically designed
on tabular data and thus inapplicable, we compare ADF
with a baseline approach which adopts the key idea of
THEMIS and AEQUITAS, applying random perturbation
(RP) instead of gradient-guided perturbation (to show the
effectiveness of gradient-guided search). In particular, both
on the global and local stage, RP selects the perturbed token
and substitutes one with synonyms completely at random.

All experiments are conducted on a GPU server with
1 Intel Xeon 3.50GHz CPU, 64GB system memory, and 1
NVIDIA GTX 1080Ti GPU. Both AEQUITAS and SG are
configured according to the best performance setting re-
ported in the respective papers. Table 2 shows the value
of parameters used in our experiment to run ADF.

We adopt 5 open-source datasets for fairness testing as
our experiment subjects, including 3 tabular datasets and 2
text datasets. The details of the datasets are as follows.

• Census Income The details of this dataset have been
introduced in Example 4.1. It is used as a benchmark
by AEQUITAS and SG [14].

• German Credit5 This is a small dataset with 600 data
and 20 attributes. It was used to evaluate several
existing works [12], [14]. The attributes of age and
gender are protected attributes. The original aim of
the dataset is to give an assessment of an individual’s
credit based on personal and financial records. It is
used as a benchmark by SG [14].

• Bank Marketing6 The dataset came from a Portuguese

4. https://github.com/sakshiudeshi/Aequitas
5. https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+

data)
6. https://archive.ics.uci.edu/ml/datasets/bank+marketing

x0

x1

x2

xt

… …
…

word0

word1

word2

wordt

…

Words Embeddings LSTM Last State FC

Fig. 6. Experimental LSTM-based model.

TABLE 3
Experimented DL models.

Dataset Model Accuracy
Census Income Six-layer Fully-connected NN 88.15%
German Credit Six-layer Fully-connected NN 100%
Bank Marketing Six-layer Fully-connected NN 92.26%

Wiki Comments 3-layer 10-state LSTM 89.9%
3-layer 10-state GRU 90.7%

Jigsaw Comments 3-layer 10-state LSTM 85.8%
3-layer 10-state GRU 86.8%

banking institution and is used to train models for
predicting whether the client would subscribe a term
deposit based on his/her information. The size of the
dataset is more than 45,000. There are a total of 16
attributes and the only protected attribute is age. It is
used as a benchmark by SG [14].

• Wikipedia Comments The overview of this dataset has
been summarized in Example 4.2.

• Jigsaw Comments7 This is a public dataset from an
online competition that was held by Jigsaw and
Google. It is also a commonly used benchmark for
fairness research [10]. It has around 313,000 com-
ments with an average length of 80 words classified
into six categories of toxicity (i.e., toxic, severe toxic,
obscene, threat, insult, and identity hate) and non-
toxic. The sensitive features are the same as those for
the Wikipedia Comments.

For the tabular data, we use the binning method to pre-
process the numerical attributes. For the text data, in order
to balance accuracy and efficiency, we adopt the state-of-art
embedding tool GloVe [44] and use the 50-dimension pre-
trained word vectors8 trained on 6 billion tokens and 400
thousand vocabularies of Wikipedia 2014 and Gigaword 5.
For those out-of-vocabulary words, we take the average of
all the word vectors as an unknown vector suggested by the
author of GloVe.

The details of the models used in the experiments are
shown in Table 3. Since the experimented tabular datasets
are relatively simple, we train models in the form of fully-
connected DNN. We adopt two common improved variants
of RNN, Long Short Term Memory (LSTM) [45] and Gated
Recurrent Unit (GRU) [46], both with 3 layers and 10 hidden

7. https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge

8. http://nlp.stanford.edu/projects/glove

11

TABLE 4
Comparison with AEQUITAS. #GDiff denotes the number of unique

generated samples, and #ID denotes the number of identified
discriminatory samples.

Dataset Prot. Attr. AEQUITAS ADF
#GDiff #ID #GDiff #ID

census age 56955 6045 491650 256980
census race 54734 4737 344162 139179
census gender 32148 2930 259227 47644
bank age 32870 8949 700285 364758
credit age 99560 38479 398209 233664
credit gender 33137 4996 312919 73497

states, on the text datasets. After getting the final state of the
LSTM and GRU models, we apply a fully connected layer
to output the predicted labels. Figure 6 shows the overview
of the LSTM-based tested model.

The key KPIs for the comparison between our algorithm
and baselines are the number of discriminatory samples, the
success rate of generating discriminatory samples, and the
generation efficiency. For text data, we additionally compare
the quality of generated discriminatory text.

5.2 Research Questions

We aim to answer the following research questions through
our experiments.

RQ1: How effective is our algorithm in finding discriminatory
samples?
Tabular data We first compare ADF with AEQUITAS and
SG on tabular datasets. Since AEQUITAS and ADF both
have a global generation phase and a local generation phase,
we conduct a detailed comparison for both phases. For both
of them, we generate 1,000 samples in the global generation
phase (except for credit data, which is set to be 600 due to
its small size), and then generate 1,000 samples during local
generation for each successfully identified discriminatory
sample in the global phase.

Table 4 presents the details of the comparison. Note that
the maximum number of the two-stage searched samples is
thus 1,001,000 (i.e., 1,000 global and 1,000*1,000 local sam-
ples). We further filter out the duplicate samples. Column
#GDiff is the number of non-duplicate samples generated
after the two-phase search. Column #ID shows the number
of discriminatory samples identified. It can be observed
that ADF is significantly more effective than AEQUITAS in
finding discriminatory samples. On average, ADF generates
8.6 times more non-duplicate samples. One of the reasons
why AEQUITAS explores a much smaller space is that it
often generates duplicate samples (as was observed in [14])
since a global sampling distribution is used for all the
inputs, while ADF perturbs a specific input according to the
guidance of an sample-specific gradient. More importantly,
ADF generated nearly 25 times more discriminatory samples
on average. A close investigation shows that the reason is
that gradient provides much better guidance in identifying
discriminatory samples. This is evidenced by the average
success rate which is calculated by #ID / #GDiff. AEQUITAS
has a success rate of 18.22%, whereas ADF achieves a success rate
of 40.89%, which is more than 2 times that of AEQUITAS.

TABLE 5
Comparison with SG in 500 seconds. #GDiff denotes the number of
unique generated samples, and #ID denotes the number of identified

discriminatory samples.

Dataset Prot. Attr. SG ADF
#GDiff #ID #GDiff #ID

census age 1290 544 8202 3453
census race 1541 632 10677 4290
census gender 1482 280 22977 4164
bank age 1385 842 5911 3587
credit age 2752 1574 5771 3923
credit gender 3202 926 14711 4091

TABLE 6
Number of discriminatory samples generated by global generation.

Dataset Protected Attr. AEQUITAS SG ADF
census age 101 291 658
census race 95 139 456
census gender 37 54 334
bank age 43 142 872
credit age 175 247 594
credit gender 47 87 451

Although SG similarly has two phases, it works differ-
ently from ADF or AEQUITAS. That is, SG maintains a
priority queue, pops a sample, and applies global search
iteratively. If the sample is a discriminatory sample, the
local search is employed. Afterward, all the search results
are pushed into the queue without checking whether they
are discriminatory or not. As a result, it is infeasible to
directly compare SG and ADF as above. Thus, we apply
an overall evaluation between ADF and SG within the same
time limit, i.e., 500 seconds. The results are shown in Table
5. We observe that on average: ADF 1) explores 6.6 times more
samples, 2) generates 6.5 times more discriminatory samples, and
3) has a 42.8% success rate (whereas SG has a success rate of
41.5%). One thing to notice is that our method beats SG
which is based on a symbolic solver even in terms of success
rate. One possible explanation is that the model explainer
SG utilized is far from accurate for complex models like DL
models.

In addition to the above overall evaluation with two
baselines, we further conduct a comprehensive comparison
phase by phase, i.e., global generation and local generation.

Global generation The goal of the global generation is to
identify diversified discriminatory samples. For a fair com-
parison, we generate 1,000 samples in the global phase
(except for credit data, which is set to be 600), and count how
many discriminatory samples are identified by each method
in this stage. Note that the same seed samples are used for
SG and ADF.

The results are shown in Table 6. It can be observed that
ADF generates the most number of discriminatory samples,
with an average improvement of 794% and 324% when it is
compared with AEQUITAS and SG respectively. We take that
this shows the effectiveness of guiding the search based on
gradient during global generation.

Local generation The local generation aims to further craft
more discriminatory samples based on the results of the

12

TABLE 7
Number of discriminatory samples generated by local generation.

Dataset Protected Attr. AEQUITAS SG ADF
census age 216 422 598
census race 153 371 526
census gender 189 210 321
bank age 221 634 708
credit age 448 600 750
credit gender 142 280 337

AEQUITAS

ADF

Fig. 7. Effectiveness of local generation.

global generation. To make a fair comparison between the
three strategies for local generation, we seed each method
with the same set of discriminatory samples and apply the
three strategies to generate 1,000 samples for each seed.
In this way, we are able to properly evaluate the local
generation strategies without being influenced by the results
of the global generation adopted by the three methods.

Table 7 shows the results of the comparison. It is obvious
that the local generation strategy of our method ADF per-
forms the best among the three. Specifically, ADF generates
153% more discriminatory samples than AEQUITAS, and 32%
more than SG on average.

Recall that AEQUITAS and ADF both guide local gener-
ation through a probability distribution which intuitively
is the likelihood of identifying discriminatory samples
by changing certain attributes. The difference is that AE-
QUITAS’s probability is global, i.e., the same probability is
used for all samples, whereas ADF’s probability is based on
gradient and thus specific to the certain sample. We conduct
a further experiment to evaluate whether ADF’s approach is
more effective or not. We feed these approaches the same set
of seed samples and then measure the relationship between

the number of seed samples explored and the number of
new discriminatory samples identified.

The result is shown in Figure 7 where the x-axis is the
number of seeds explored; the blue line represents the total
number of samples generated and the red line represents
the number of discriminatory samples identified. It can be
observed that for ADF, both lines grow steadily with the
number of seeds explored, which suggests that the sample-
specific probability used in ADF works reliably. In compar-
ison, the increase of both the number of samples and the
number of discriminatory samples drops with an increasing
number of seeds for AEQUITAS. This is possibly due to
the ineffective global probability and the duplication in the
generated samples.

Text Data We compare ADF with random perturbation (RP)
on text datasets. Table 8 presents the results where the col-
umn Protected Attr. is the protected attribute. Column Seed is
the number of seeds in the dataset that are explored using
our method. A seed is a text which contains at least one sen-
sitive token. We limit the number of seeds to be maximum
of 1, 000 to reduce the overall experiment time. If there are
fewer than 1, 000 in the given set, the entire available set
is used. Column Raw shows the number of discriminatory
samples among the seeds (without any perturbation). Col-
umn RP is the number of discriminatory samples identified
by the baseline approach where the random perturbation is
applied to non-discriminatory text in the global generation,
whereas ADF ASC is the number of discriminatory sam-
ples identified through gradient-guided perturbation. The
results show that the ADF is significantly more effective
than the baseline, i.e., generating 4.40 times more discrimi-
natory samples on average. In other words, gradient-guided
perturbation applied to non-discriminatory text identifies
much more discriminatory samples than random searching.

Besides, we also compare ADF with adversarial attacks
in terms of effectiveness in generating discriminatory sam-
ples. As shown in Table 8, it is clear that the fairness
testing method which considers two similar samples is
much more effective in crafting discriminatory samples, on
average, it generates 22.11% (18.18%) more discriminatory text
for ASC [19] (HotFlip [25]). This is because our method ADF
aims to maximize the output difference between two similar
samples, which effectively avoids the situation that x and x′

are too close so that they always cross the decision boundary
at the same time.

Overall, it can be observed that the number of existing
discriminatory samples or discriminatory samples gener-
ated through perturbation on non-discriminatory text is still
quite limited, i.e., no more than 211 across all datasets, all
models, and all sensitive features. This suggests that the
local generation is indeed necessary to further generate
discriminatory samples. For each discriminatory sample
identified on the global phase9, we apply local genera-
tion to generate at most 1, 000 perturbed texts to identify
discriminatory samples. Column RP and ADF show the
total number of discriminatory samples generated through
random perturbation and our gradient-guided perturbation

9. For ADF, we utilize the discriminatory samples generated by
ADF ASC as local generation seeds.

13

TABLE 8
Effectiveness.

Dataset Model Protected Attr. Global Generation Local Generation
Seed Raw RP ASC ADF ASC HF ADF HF RP ADF

Wiki

LSTM

country 1000 31 29 119 131 308 401 47094 (80.6%) 145481 (92.1%)
ethnic 1000 117 29 123 166 326 423 128174 (90.6%) 261746 (94.9%)
race 450 24 17 76 95 157 177 32967 (83.0%) 107678 (92.8%)

religion 358 29 14 50 64 117 150 37382 (88.7%) 86350 (94.6%)

GRU

country 1000 33 22 83 100 303 405 43580 (81.5%) 117541 (90.9%)
ethnic 1000 52 34 121 142 366 429 70093 (84.7%) 174488(92.4%)
race 450 27 11 56 82 172 208 30651 (82.8%) 93944 (88.2%)

religion 358 19 9 31 39 122 143 24748 (90.3%) 53866 (94.8%)

Jigsaw

LSTM

country 1000 22 26 106 123 224 254 32922 (72.9%) 123182 (88.7%)
ethnic 1000 37 33 101 147 262 321 54741 (82.0%) 161807 (91.7%)
race 1000 49 60 195 211 359 372 78513 (74.9%) 218982 (87.2%)

religion 1000 51 52 163 204 325 358 83102 (86.2%) 227167 (93.3%)

GRU

country 1000 22 34 84 95 232 250 39242 (74.5%) 98753 (88.9%)
ethnic 1000 66 38 124 139 274 323 84765 (86.3%) 181891 (93.3%)
race 1000 55 58 179 198 290 333 85106 (79.3%) 218404 (90.1%)

religion 1000 58 55 147 169 361 400 88945 (84.8%) 200968 (93.5%)

respectively. Note that we are also reporting the results of
distinct texts in each entry. It is obvious that our gradient-
guided perturbation generates significantly more discrim-
inatory samples than random perturbation, i.e., on average
2.68 times more. Furthermore, the perturbation on a dis-
criminatory sample by gradient-guided search has a higher
success rate than the random approach. On average, 91.7% of
the distinct texts crafted by our gradient-guided perturbation are
successfully identified as discriminatory samples while the success
rate of random perturbation is 82.69%.

We thus have the following answer to RQ1:

Answer to RQ1: ADF outperforms the baseline methods.
For tabular data, compared to AEQUITAS, ADF searches
9.6 times input space, generates 25 times discriminatory
samples, and has more than 2 times success rate. Compared
to SG, ADF searches 6.6 times input space and generates
6.5 discriminatory samples, and has a slightly higher success
rate given the same time limit. Gradient provides effective
guidance during both global generation and local generation.
For text data, ADF generates 2.68 times discriminatory
samples and has a 9.01% more success rate than random
perturbation on average.

RQ2: Are discriminatory samples generated by ADF valid?
Recall that we aim to generate valid discriminatory samples,
especially we need to preserve the syntax and semantics for
the text. To answer this question, we measure how close the
generated discriminatory samples are to the original ones
using multiple metrics that are commonly applied in NLP
research. Noted that these metrics also can be utilized to
filter the similar text by giving a threshold [47].

• Lp Norm Distance is widely used to assess the dis-
similarity of two samples. Specifically, L0 distance
counts the number of tokens modified and L2 dis-
tance quantifies the Euclidean distance in the word
vector space. A smaller distance indicates higher
similarity.

• Jaccard Similarity Coefficient is another popular statis-
tical indicator to measure similarity. Given two sets

containing all tokens in the two texts respectively,
it is defined as the division of the size of the inter-
section over the size of the union. The larger is the
coefficient, the better.

• BLEU Score [48] is widely used in neural machine
translation to measure the differences between a can-
didate and reference sentences [49]. It first calculates
the N -grams (N = 1, 2, 3, 4) model of the two texts
respectively and then counts the number of matches.
In our experiment, it is used to evaluate the quality
of the generated IDS by regarding the original text as
a reference. The score ranges from 0 to 1 and a higher
score is preferred.

• Semantic Similarity converts words to vectors using
an embedder and uses their cosine similarity for the
evaluation. In our experiment, we utilized the model
in [50] to convert the original text and generated IDS
to two 512-dimensional vectors and then compute
the cosine of their angles. The higher the score is, the
better.

For a fair comparison on text datasets with the base-
line, we take the same number of discriminatory samples
identified on the global generation phase and generate
discriminatory samples by local generation. Afterward, we
compute and compare the above-mentioned metrics for
both approaches. Figure 8 shows the average metric values
computed based on the LSTM model trained on the Wiki
Comment dataset. Since the results of other models and
other datasets are similar, they are omitted and the readers
are referred to [22] for details.

First, it can be observed that a consistent good score
is achieved by discriminatory samples generated by our
approach across all five metrics. For instance, the average
L0 norm distance is 3.13, which intuitively means that only
3.13 tokens on averages are modified. Second, it is evident
that our gradient-guided perturbation performs better than
random perturbation on all metrics, i.e., the discriminatory
samples generated by our approach are more similar with
the seed text than those generated through random per-
turbation. On average, discriminatory samples generated by our
approach modify 13.55% less tokens (see Figure 8(a)), have 9.39%
shorter distance in word embedding space (see Figure 8(b)), and

14

(a) L0 Norm Distance (b) L2 Norm Distance (c) Jaccard Similarity Coef-
ficient

(d) BLEU Score (e) Semantic Similarity

Fig. 8. Validity analysis.

TABLE 9
Validity analysis w.r.t. different global generation strategies.

Metric ASC ADF ASC HF ADF HF
L 0 2.6296 2.1851 2.6364 2.6136
L 2 5.5460 5.2825 5.8291 5.5203
JSC 0.8514 0.8770 0.8624 0.8724

BLEU 0.8186 0.8577 0.8482 0.8634
SS 0.8914 0.9135 0.8862 0.8967

TABLE 10
Time (seconds) taken to generate 1,000 discriminatory samples on

tabular datasets.

Dataset Prot. Attr. AEQUITAS SG ADF
census age 172.64 720.49 59.15
census race 128.75 506.33 65.95
census gender 158.37 2128.42 78.68
bank age 191.16 521.79 106.93
credit age 176.31 321.63 64.92
credit gender 156.22 476.52 102.90

are 7.25%, 3.17%, 11.04% more similar to the original text in
terms of Jaccard Similarity Coefficient (see Figure 8(c)), Semantic
Similarity (see Figure 8(e)) and BLEU Score (see Figure 8(d))
respectively.

In Table 9, we conduct an experiment to evaluate the
quality of discriminatory samples generated by different
global generation strategies. Similarly, only the result of
the LSTM model trained on the Wiki Comment dataset
(protected attribute is race) is shown here, and the remaining
results are in [22]. The results show that for ASC (HotFlip),
comparing with the adversarial attack version, ADF gen-
erates discriminatory samples with 0.44 (0.02) fewer perturbed
tokens, 0.26 (0.31) shorter Euclidean distance, and 0.03 (0.01),
0.02 (0.01), 0.04 (0.02) more similar to the original text in terms
of Jaccard Similarity Coefficient, Semantic Similarity and BLEU
Score respectively.

We thus have the following answer to RQ2:

Answer to RQ2: The discriminatory samples generated
through ADF are similar to the original one.

RQ3: How efficient is our algorithm in finding discriminatory
samples?
Besides effectiveness, efficiency is also important. We thus
conduct an experiment to compare the efficiency of ADF
with baseline.

TABLE 11
Time (seconds) taken to generate 5,000 discriminatory samples on text

datasets.

Dataset Model Prot. Attr. RP ADF ASC

Wiki

LSTM

country 2894.8 2371.5
ethnic 563.9 837.2
race 659.0 1587.4

religion 542.0 746.8

GRU

country 2037.8 746.8
ethnic 1307.4 1142.6
race 451.7 638.3

religion 510.9 551.1

Jigsaw

LSTM

country 2069.5 1848.1
ethnic 738.3 1136.9
race 1296.3 2677.5

religion 444.2 685.6

GRU

country 1572.1 910.6
ethnic 1265.5 2267.6
race 472.6 583.1

religion 919.8 438.5

Table 10 presents how much time each method takes to
generate 1,000 discriminatory samples on tabular datasets.
Note that for all methods we measure the total time, es-
pecially for SG, it includes the time for generating the
explanation model and constraint solving. It is evident that
ADF has the best performance. On average, it takes only
48.97% and 14.53% of the time required by AEQUITAS and
SG respectively. Combined with the results shown in Table 4,
it implies that AEQUITAS and ADF have similar efficiency
in generating samples (and ADF has a much higher success
rate in finding discriminatory samples). Considering that
AEQUITAS performs random sampling whereas ADF needs
to calculate the gradient, it suggests that the overhead of cal-
culating gradient in ADF is negligible. SG takes significantly
more time to generate samples based on a seed sample. Its
efficiency is thus much worse, as expected.

For the text datasets, we generate 5,000 discriminatory
samples by both the baseline approach and our approach
(ADF ASC) and record the time taken in Table 11. Overall,
ADF takes an average of 1234.2 seconds across all datasets
and models, which we believe are reasonably efficient,
compared to the cost of data collection and model training
for such tasks. Comparing our approach with the baseline,
RP takes on average 2.9% less time than our approach. The
additional time overhead is mainly due to the extra step of
calculating the gradients on both global and local generation
stages. Due to the structure of RNN, the time complexity of
back-propagation by chain-rule is O(N), where N is the
length of the text. Further experiment shows that this step

15

TABLE 12
Fairness improvement on tabular datasets.

Dataset Prot. Attr. Before (%) After (%)
AEQUITAS SG ADF

census age 10.88 4.03 2.41 2.26
census race 9.75 7.05 6.89 6.15
census gender 3.14 2.33 1.90 1.65
bank age 4.60 1.68 2.04 1.19
credit age 27.93 13.91 13.19 12.05
credit gender 7.68 4.58 4.66 3.93

is the most time consuming, e.g., in the case of the LTSM
model trained on the Wiki Comments, each gradient com-
putation takes 0.454 (0.184) seconds, while the remaining
steps only take 0.060 (0.041) seconds for perturbation on
global (local) phase. Besides, we also compare the efficiency
of ADF ASC and ADF HF, they take an average of 0.83 and
3.95 seconds each iteration respectively. This is because Hot-
Flip traverses all possibilities of perturbed and substituting
tokens in each iteration, which makes its time complexity
is O(m ∗ k), where k is the number of similar tokens for
selecting. However, the time complexity of ASC is O(k),
since it greedily chooses the most important token and then
only traverses the top-k similar words.

We thus have the following answer to RQ3:

Answer to RQ3: ADF is reasonably efficient in generating
discriminatory samples. There is a slight time overhead in
applying gradient-guided perturbation, which is more notice-
able for RNN.

RQ4: How useful are the identified discriminatory samples for
improving the fairness of the DNN?
To further show the usefulness of our generated discrimina-
tory samples, we evaluate whether we can improve the fair-
ness of the DL model by retraining it with data augmented
with the generated discriminatory samples. We remark that
AEQUITAS also uses retraining to improve the fairness of
the original models and SG does not have such discussions.
We need a systematic way of evaluating the fairness of a
given model. For this, we adopt the method proposed and
used by AEQUITAS [13]. The idea is to randomly sample
a large set of samples and evaluate the model fairness
by the percentage of discriminatory samples in the set.
However, as it is nearly impossible to obtain meaningful
text by random sampling, we evaluate the improvement by
an independently generated set of discriminatory samples,
which is a common practice [51], [52]. That is, we apply our
approach to generate an independent set of IDSs based on
the testing set and evaluate how many of them are IDSs
with respect to the retrained model. Note that since we
randomly select 5% of generated discriminatory samples for
data augment and retraining, we repeated the procedure 5
times and present the average improvement.

The results on tabular datasets are shown in Table 12,
where columns Before and After are the estimated fairness
of the model before and after retraining using the generated
discriminatory samples. The smaller the number is, the more
fair the model is. It can be observed that retraining with

TABLE 13
Fairness improvement on text datasets.

Dataset Model Prot. Attr. Augmented (%) Certified (%)

Wiki

LSTM

country 72.4 54.9
ethnic 70.2 64.1
race 64.2 61.8

religion 54.2 63.4

GRU

country 48.6 66.3
ethnic 66.2 71.0
race 58.1 65.8

religion 51.0 59.8

Jigsaw

LSTM

country 71.6 51.5
ethnic 70.4 55.6
race 58.5 60.4

religion 63.8 55.5

GRU

country 64.1 57.9
ethnic 56.6 61.4
race 53.5 66.3

religion 40.4 59.8

TABLE 14
Fairness improvement w.r.t. different methods. The improvement of

ADF ASC is showed in Table 13.

Dataset Model Prot. Attr. ASC HF ADF HF
Wiki LSTM race 63.4 66.3 67.5

Jigsaw GRU ethnic 57.1 61.7 62.0

the discriminatory samples can significantly improve the
fairness, and ADF achieves better fairness improvement (with
more identified discriminatory samples), i.e., 57.2% on average,
versus existing approaches, i.e., 45.1% for AEQUITAS and 49.1%
for SG.

Table 13 presents the results on text datasets. Note that
the augmented data is crafted by ADF ASC based on the
training dataset, which has no overlap with the testing
dataset. The number of independently generated discrim-
inatory samples is 155,690 on average for each row. Column
Augmented shows the percentage of those independently
generated discriminatory samples that are no longer dis-
criminatory samples given the retrained model. That is,
the bigger the number, the less discriminative the retrained
model. As observed from Table 13, retraining reduces the
number of discriminatory samples by an average of 60.2% and
up to 72.4%. Since individual fairness can be regarded as a
specific form of robustness according to its definition, we
also compare the effectiveness of augmented training with
certified training which acquires the tractable upper bound
for the worst-case perturbation and then provides a certifi-
cate of robustness [53], [54], [55]. Since [54], [55] propagate
the upper bound with interval arithmetic proposed by [56],
which is only sufficient for FNNs and CNNs, here we adopt
[53] to present a comprehensive analysis. Column Certified
listed the fairness improvement for the certified trained
model. On average, the performances of augmented training and
certified training achieve similar improvement on fairness, 60.2%
versus 61.0%. Although certified training is a one-time effort
for all the potential sensitive tokens, fairness testing not
only improves the fairness of the model but also quantifies
the bias of the original model. In addition, we conduct a
supplementary experiment to show the fairness improve-
ment with regard to different sample generating methods
in Table 14, and the results of ADF ASC are presented in

16

Table 13. Noted that the testing data is all generated using
method ADF ASC. It reveals that the greater the number
and diversity of discriminatory samples, the more helpful
to improve the fairness of the model.

We thus have the following answer to RQ4:

Answer to RQ4: The discriminatory samples generated by
ADF are useful to improve the fairness of the DL models
through retraining, with an average improvement of 57.2%
on tabular datasets and 60.2% on text datasets.

5.3 Threats to Validity

Limited datasets In the experiment, We evaluated ADF
with 5 datasets, including 2 text datasets for toxic classifi-
cation tasks. Compared with other text classification tasks,
toxic classifiers are more prone to discrimination issues,
e.g., racism, sexism, and most of the relevant data can
be easily obtained from social media. Although they are
the most common public benchmarks used in the fairness
testing literature, we cannot conclude the effectiveness and
efficiency of other datasets. As our approach is independent
of the datasets and has been made available online, it can
be used on other datasets with minor adjustments for data
adaptation.

Limited models We only tested three deep learning models
in the experiment. Especially for the tabular data, since they
are relatively simple (i.e., with a maximum of 20 features),
we only used the basic fully connected DNN. However, the
key idea of ADF is generic which can be easily implemented
for more complex deep learning models like convolutional
neural networks (CNNs), as our approach only requires a
way of computing the gradients.

White-box setting ADF is designed as a white-box ap-
proach, i.e., the fairness testing part requires the full knowl-
edge of the target deep learning models. It is widely ac-
cepted that deep learning model testing could have the full
knowledge of the target model. In the future, we will explore
how to extend it to a black-box setting, e.g., selecting the
token for perturbation not based on gradients but certain
importance scores (i.e., the confidence of prediction).

Step-size parameters The step-size parameters of ADF for
tabular data depend on the training dataset. For datasets
with only categorized attributes, it is easy to set it to be 1. For
other datasets, further research may be necessary to identify
an effective step size. If the step size is too big, it may
miss some discriminatory samples during its perturbation,
especially for the local generation. If the step size is too
small, it is hard to generate discriminatory samples in the
global generation.

Complex context Text data is much more complex than
tabular data and it is certain that our approach does not
cover all kinds of discrimination. First, one word could
have different meanings according to their contexts, for
example, “black” and “white” may refer to either color or
race. We thus are unable to filter them out without manual

labeling. Second, there may be many forms of specific dis-
crimination. For instance, sexism may not only be associated
with tokens such as “male/female”, but also “he/she”, and
“actor/actress”. It is thus nearly impossible to list them all.

5.4 Discussion

In this work, we aim to acquire a large number of diverse
discriminatory samples, since the diversity and quantity
of discriminatory samples would help us to 1) figure out
whether there is discrimination in different subspaces of the
model, 2) mitigate the discrimination in multiple parts of
the model at one time through retraining. Clustering the
original data in ADF can be regarded as a coarse-grained
equivalence class partition method since perturbation only
slightly shifts the distribution. However, this is not enough,
we hope that there will be more fine-grained methods for
dividing equivalence classes, which could help us better
understand the causes of discrimination and improve model
fairness.

Another point worth discussing is the tolerance of fair-
ness. Due to the sensitivity of fairness in society, fairness
is strictly required in many cases. For example, many USA
states prohibit the use of face recognition in public places
recently, and discrimination is one of the most important
reasons. Although it is challenging to achieve complete
fairness for DL models, our goal is to improve the fair-
ness of DL models, rather than giving up DL models.
First, DL does bring convenience to our daily life. Second,
manual decision-making is not completely fair either. The
real problem is that discrimination in historical data may
be introduced or even magnified in the training process
of the model. Thus, we need to locate the data on which
discrimination occurs and figure out how to reduce the
discrimination learned by the model as much as possible,
and so that its fairness can reach the same level as or even
higher than that of manual decision-making.

6 RELATED WORK

Fairness Many works exist on the fairness issues of AI
in general. In [57], Chen et al. attributed the unfairness
of the trained model to the data collection, then decom-
posed the discrimination of data into bias, variance, and
noise, and last proposed some strategies to estimate and
reduce them. In [58], Albarghouthi et al. proposed fairness-
aware programming, which monitors whether programs
violate custom fairness at runtime by concentration inequal-
ities [59]. In [8], Bastani et al. first formalized three fairness
specifications demographic parity, equal opportunity, and
path-specific causal fairness, and then utilized adaptive
concentration inequalities to obtain a probabilistic guarantee
of the model with respect to the given specification. In [11],
Thomas et al. proposed a general and flexible framework
by encoding fairness constraints (upper bound) into the
objective function. When the amount of data is enough,
Hoeffding’s inequality [60] is used to obtain the bounds,
otherwise, Student’s t test is used. In addition to these gen-
eral methods, some works are focused on the fairness of text.
In [61], [62], the impacts of using NLP models and potential
bias caused in real-world applications are discussed. [63]

17

points out that the bias may exist in word embeddings.
It also proposes a mechanism on gender-neutral words
to quantify the degree of gender bias by projection and
reduces the bias by removing the gender associations. [40]
shows that the discrimination is correlated with comment
length and the distribution differences between the sensitive
values in the toxic data and the whole dataset. In [10],
Garg et al. improve the model’s fairness through a robust
training method called CLP which introduces the prediction
difference of the original input and its counterpart (which
only differs in certain sensitive features) as penalties into
the training loss.

Fairness testing This work is closely related to fairness
testing of machine learning models. Galhotra et al. proposed
THEMIS [12] which firstly defines software fairness testing,
then introduces fairness scores as measurement metrics and
lastly designs a causality-based algorithm utilizing the ran-
dom test input generation technique to evaluate the model
fairness, i.e., the frequency of discriminatory samples’ occur-
rence of software. However, THEMIS is inefficient in general
since it relies on random sampling without guidance on the
generation. Udeshi et al. proposed AEQUITAS [13] which
inherits and improves THEMIS and focuses on the discrimi-
natory sample generation. AEQUITAS is a systematic gener-
ating algorithm. It first explores the input domain randomly
to discover discriminatory samples in the global search
phase. During the local generation, AEQUITAS searches
the neighbors of discriminatory samples identified in the
global phase, by perturbing them. For the local generation,
AEQUITAS designs three different strategies, i.e., random,
semi-directed, and fully-directed, to update the probability
which is used to guide the selection of attributes to perturb.
Based on their evaluation, fully-directed has the best effec-
tiveness and efficiency. Besides searching the discriminatory
samples, AEQUITAS also design an automated iterative
retraining method to obtain a more fair model. Later, Agar-
wal et al. proposed Symbolic Generation (SG) [14] which
integrates symbolic execution and local model explanation
techniques to craft discriminatory samples. SG relies on
the local explanation of a given input which constructs a
decision tree utilizing the samples generated randomly by
the Local Interpretable Model-agnostic Explanation (LIME)
[15]. The path of the tree determines all the important
attributes leading to the prediction. The algorithm also
contains a global generation phase and a local generation
phase. A detailed comparison between ADF and the above
approaches is presented in Section 4.3.

Gradient-based attacks This work is also related to research
on gradient-based adversarial attacks. A variety of works
have been proposed to explore the vulnerability of the DL
model by crafting adversarial samples, and gradient-based
adversarial attack is one kind of the most effective methods.
Goodfellow et al. proposed the first attacking algorithm Fast
Gradient Sign Method (FGSM) [17] to generate adversarial
samples by perturbing the original input with the lineariza-
tion of the loss function used in the training process. FGSM
is fast by only attacking once according to the gradient.
Later, several other attack methods are proposed to extend
FGSM. For instance, instead of attacking only once, Basic

Iterative Method (BIM) [18] employs perturbations based
on gradients multiple times (often with smaller step sizes)
and applies a function that performs per-attribute clipping
to make sure the sample after each iteration is located in
the neighborhood of the original sample. In [19], Papernot
et al. first formalize the adversarial sequence optimization
problem in the context of sequential data and develops
ASC to obtain malicious texts by iteratively replace a token
with the one such that the sign of the difference between
them is closest to the sign of gradient. However, ASC may
cause syntactic or semantic errors since it searches in the
whole corpus. In [32], a general attack framework called
TEXTBUGGER is proposed to generate adversarial texts. It
works as follows: 1) find the important words by a) com-
puting the Jacobian matrix under white-box setting and b)
scoring with the confidence drop before and after removal of
a word under black-box setting; 2) generate adversarial texts
by inserting a space, deleting the middle letter, swapping
two adjacent characters, replacing a letter with a similar one,
and taking the top−k nearest words in embedding space as
a substitute. In [25], HotFlip is proposed to generate ad-
versarial examples with character/word substitution, which
uses beam search to apply perturbation with the highest
loss estimated by gradient with respect to the one-hot input.
Besides, Pei et al. [21] designed an algorithm for maximiz-
ing the coverage of neurons as well as model outputs of
multiple DNNs, and solve the optimization function using
the gradient.

7 CONCLUSION

In this work, we propose a lightweight algorithm ADF to
efficiently generate discriminatory samples for deep learn-
ing models through adversarial sampling. Our algorithm
combines a global phase and a local phase to systematically
search the input space for discriminatory samples with the
guidance of gradient. In the global generation, ADF first lo-
cates the discriminatory samples near the decision boundary
by iteratively perturbing towards the decision boundary. In
the local generation, ADF again samples according to the
gradient to search the neighborhood of a found discrimina-
tory sample. The experiment on 22 benchmarks of 5 datasets
shows that ADF is able to effectively generate diverse valid
discriminatory samples within a reasonable time.

As for future work, we would like to propose additional
criteria to measure the generated discriminatory samples,
and then cluster them into different equivalence classes to
improve the effectiveness of augmented retraining or fine-
tuning. Besides, we also want to uncover the root cause of
discrimination in the model, e.g., mapping it to the training
data.

ACKNOWLEDGMENTS

This research was supported by the Key-Area Research
and Development Program of Guangdong Province (Grant
No.2020B0101100005). This research was also supported by
the Key Research and Development Program of Zhejiang
Province (Grant No.2021C01014), the Fundamental Research
Funds for the Zhejiang University NGICS Platform, the
Guangdong Science and Technology Department under

18

Grant No. 2018B010107004, and Ministry of Education, Sin-
gapore (Project MOET32020-0004, T2EP20120-0019, and T1-
251RES1901).

REFERENCES

[1] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
2015), Boston, MA, USA, 2015, pp. 815–823. [Online]. Available:
https://doi.org/10.1109/CVPR.2015.7298682

[2] K. Fu, D. Cheng, Y. Tu, and L. Zhang, “Credit card fraud
detection using convolutional neural networks,” in Neural
Information Processing - 23rd International Conference (ICONIP
2016), Kyoto, Japan, 2016, pp. 483–490. [Online]. Available:
https://doi.org/10.1007/978-3-319-46675-0 53

[3] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks
seen at scale,” in Proceedings of the 26th International Conference on
World Wide Web (WWW 2017), Perth, Australia, 2017, pp. 1391–1399.
[Online]. Available: https://doi.org/10.1145/3038912.3052591

[4] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine
Learning. fairmlbook.org, 2019, http://www.fairmlbook.org.

[5] H.-L. E. G. on Artificial Intelligence (AI HLEG), “Draft ethics
guidelines for trustworthy ai,” European Commission, Tech. Rep.,
2018.

[6] F. Tramèr, V. Atlidakis, R. Geambasu, D. J. Hsu, J. Hubaux,
M. Humbert, A. Juels, and H. Lin, “Fairtest: Discovering
unwarranted associations in data-driven applications,” in 2017
IEEE European Symposium on Security and Privacy (EuroS&P
2017), Paris, France, 2017, pp. 401–416. [Online]. Available:
https://doi.org/10.1109/EuroSP.2017.29

[7] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian, “Certifying and removing disparate
impact,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, 2015, pp. 259–268. [Online]. Available:
https://doi.org/10.1145/2783258.2783311

[8] O. Bastani, X. Zhang, and A. Solar-Lezama, “Probabilistic
verification of fairness properties via concentration,” PACMPL,
vol. 3, no. OOPSLA, pp. 118:1–118:27, 2019. [Online]. Available:
https://doi.org/10.1145/3360544

[9] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S.
Zemel, “Fairness through awareness,” in Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, 2012, pp. 214–226.
[Online]. Available: https://doi.org/10.1145/2090236.2090255

[10] S. Garg, V. Perot, N. Limtiaco, A. Taly, E. H. Chi, and A. Beutel,
“Counterfactual fairness in text classification through robustness,”
in Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society (AIES 2019), Honolulu, HI, USA, 2019, pp. 219–226.
[Online]. Available: https://doi.org/10.1145/3306618.3317950

[11] P. S. Thomas, B. C. da Silva, A. G. Barto,
S. Giguere, Y. Brun, and E. Brunskill, “Preventing
undesirable behavior of intelligent machines,” Science, vol.
366, no. 6468, pp. 999–1004, 2019. [Online]. Available:
https://science.sciencemag.org/content/366/6468/999

[12] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing
software for discrimination,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017), Paderborn, Germany, 2017, pp. 498–510. [Online]. Available:
https://doi.org/10.1145/3106237.3106277

[13] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated
directed fairness testing,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE
2018), Montpellier, France, 2018, pp. 98–108. [Online]. Available:
https://doi.org/10.1145/3238147.3238165

[14] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black
box fairness testing of machine learning models,” in Proceedings
of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/SIGSOFT FSE 2019), Tallinn, Estonia, 2019, pp. 625–635.
[Online]. Available: https://doi.org/10.1145/3338906.3338937

[15] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should
I trust you?”: Explaining the predictions of any classifier,”
in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, 2016, pp. 1135–1144. [Online]. Available:
https://doi.org/10.1145/2939672.2939778

[16] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin,
“Towards optimal concolic testing,” in Proceedings of the 40th
International Conference on Software Engineering (ICSE 2018),
Gothenburg, Sweden, 2018, pp. 291–302. [Online]. Available:
https://doi.org/10.1145/3180155.3180177

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in 3rd International Conference on
Learning Representations, 2015.

[18] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial
examples in the physical world,” in 5th International Conference on
Learning Representations (ICLR 2017), Toulon, France, 2017. [Online].
Available: https://openreview.net/forum?id=HJGU3Rodl

[19] N. Papernot, P. D. McDaniel, A. Swami, and R. E. Harang,
“Crafting adversarial input aequences for recurrent neural
networks,” in 2016 IEEE Military Communications Conference
(MILCOM 2016), Baltimore, MD, USA, 2016, pp. 49–54. [Online].
Available: https://doi.org/10.1109/MILCOM.2016.7795300

[20] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in European Symposium on Security and Privacy, 2016, pp.
372–387.

[21] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 2017, pp.
1–18.

[22] P. Zhang, J. Wang, J. Sun, X. Wang, and T. Dai. [Online]. Available:
https://github.com/pxzhang94/ADF

[23] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang,
J. S. Dong, and T. Dai, “White-box fairness testing
through adversarial sampling,” in Proceedings of the 42nd
International Conference on Software Engineering (ICSE 2020),
Seoul, South Korea, 2020, pp. 949–960. [Online]. Available:
https://doi.org/10.1145/3377811.3380331

[24] V. Nair and G. E. Hinton, “Rectified linear units
improve restricted boltzmann machines,” in Proceedings of
the 27th International Conference on Machine Learning (ICML
2010), Haifa, Israel, 2010, pp. 807–814. [Online]. Available:
https://icml.cc/Conferences/2010/papers/432.pdf

[25] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box
adversarial examples for text classification,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(ACL 2018), Melbourne, Australia, 2018, pp. 31–36. [Online].
Available: https://www.aclweb.org/anthology/P18-2006

[26] Y. Dong, P. Zhang, J. Wang, S. Liu, J. Sun, J. Hao, X. Wang,
L. Wang, J. S. Dong, and T. Dai, “An empirical study on correlation
between coverage and robustness for deep neural networks,” in
25th International Conference on Engineering of Complex Computer
Systems (ICECCS 2020), Singapore, 2020, pp. 73–82. [Online].
Available: https://doi.org/10.1109/ICECCS51672.2020.00016

[27] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang,
“Adversarial sample detection for deep neural network
through model mutation testing,” in Proceedings of the 41st
International Conference on Software Engineering (ICSE 2019),
Montreal, QC, Canada, 2019, pp. 1245–1256. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3339661

[28] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and
X. Xing, “LEMNA: explaining deep learning based security
applications,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS
2018), Toronto, ON, Canada, 2018, pp. 364–379. [Online]. Available:
https://doi.org/10.1145/3243734.3243792

[29] L. Song, R. Shokri, and P. Mittal, “Privacy risks
of securing machine learning models against adversarial
examples,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS
2019), London, UK, 2019, pp. 241–257. [Online]. Available:
https://doi.org/10.1145/3319535.3354211

[30] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive
privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning,”
in 2019 IEEE Symposium on Security and Privacy (SP 2019),
San Francisco, CA, USA, 2019, pp. 739–753. [Online]. Available:
https://doi.org/10.1109/SP.2019.00065

[31] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, “Intriguing properties of
neural networks,” in 2nd International Conference on Learning

19

Representations (ICLR 2014), Banff, AB, Canada, 2014. [Online].
Available: http://arxiv.org/abs/1312.6199

[32] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating
adversarial text against real-world applications,” in 26th Annual
Network and Distributed System Security Symposium (NDSS
2019), San Diego, California, USA, 2019. [Online]. Available:
https://www.ndss-symposium.org/ndss-paper/textbugger-
generating-adversarial-text-against-real-world-applications

[33] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng,
“Robot: Robustness-oriented testing for deep learning systems,”
in 43rd IEEE/ACM International Conference on Software Engineering
(ICSE 2021), Madrid, Spain, 2021, pp. 300–311. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00038

[34] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in IEEE European Symposium on Security and Privacy
(EuroS&P 2016), Saarbrücken, Germany, 2016, pp. 372–387. [Online].
Available: https://doi.org/10.1109/EuroSP.2016.36

[35] J. Wang, J. Sun, P. Zhang, and X. Wang, “Detecting adversarial
samples for deep neural networks through mutation testing,”
CoRR, 2018. [Online]. Available: http://arxiv.org/abs/1805.05010

[36] A. Beutel, J. Chen, Z. Zhao, and E. H. Chi, “Data
decisions and theoretical implications when adversarially
learning fair representations,” CoRR, 2017. [Online]. Available:
http://arxiv.org/abs/1707.00075

[37] G. Goh, A. Cotter, M. R. Gupta, and M. P. Friedlander, “Satisfying
real-world goals with dataset constraints,” in Advances in Neural
Information Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, Barcelona, Spain, 2016, pp. 2415–
2423. [Online]. Available: http://papers.nips.cc/paper/6316-
satisfying-real-world-goals-with-dataset-constraints

[38] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks
seen at scale,” in Proceedings of the 26th International Conference on
World Wide Web (WWW 2017), Perth, Australia, 2017, pp. 1391–1399.
[Online]. Available: https://doi.org/10.1145/3038912.3052591

[39] M. Wiegand, J. Ruppenhofer, and T. Kleinbauer, “Detection
of abusive language: the problem of biased datasets,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019), Minneapolis, MN, USA, 2019, pp.
602–608. [Online]. Available: https://doi.org/10.18653/v1/n19-
1060

[40] L. Dixon, J. Li, J. Sorensen, N. Thain, and L. Vasserman,
“Measuring and mitigating unintended bias in text classification,”
in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society (AIES 2018), New Orleans, LA, USA, 2018, pp. 67–73.
[Online]. Available: https://doi.org/10.1145/3278721.3278729

[41] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 39, no. 1, pp. 1–38, 1977. [Online]. Available:
https://www.jstor.org/stable/2984875

[42] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th Symposium on Operating
Systems Design and Implementation, 2016, pp. 265–283.

[43] R. Řehůřek and P. Sojka, “Software Framework for
Topic Modelling with Large Corpora,” in Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, Valletta, Malta, 2010, pp. 45–50. [Online]. Available:
http://is.muni.cz/publication/884893/en

[44] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing
(EMNLP 2014), Doha, Qatar, 2014, pp. 1532–1543. [Online].
Available: https://www.aclweb.org/anthology/D14-1162/

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735

[46] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using RNN encoder-decoder for statistical
machine translation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP
2014), Doha, Qatar, 2014, pp. 1724–1734. [Online]. Available:
https://doi.org/10.3115/v1/d14-1179

[47] S. Gupta, P. He, C. Meister, and Z. Su, “Machine
translation testing via pathological invariance,” in ESEC/FSE’20:
28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, 2020, pp. 863–875. [Online]. Available:
https://doi.org/10.1145/3368089.3409756

[48] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method
for automatic evalue of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics
(ACL 2002), Philadelphia, PA, USA, 2002, pp. 311–318. [Online].
Available: https://www.aclweb.org/anthology/P02-1040/

[49] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, Montreal, Quebec, Canada, 2014, pp. 3104–
3112. [Online]. Available: http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-neural-networks

[50] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. S.
John, N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar,
B. Strope, and R. Kurzweil, “Universal sentence encoder for
english,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2018): System
Demonstrations, Brussels, Belgium, 2018, pp. 169–174. [Online].
Available: https://doi.org/10.18653/v1/d18-2029

[51] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings
of the 40th International Conference on Software Engineering
(ICSE 2018), Gothenburg, 2018, pp. 303–314. [Online]. Available:
https://doi.org/10.1145/3180155.3180220

[52] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in Proceedings of the 41st International
Conference on Software Engineering (ICSE 2019), 2019, pp. 1039–1049.
[Online]. Available: https://doi.org/10.1109/ICSE.2019.00108

[53] R. Jia, A. Raghunathan, K. Göksel, and P. Liang, “Certified
robustness to adversarial word substitutions,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP 2019), Hong
Kong, China, 2019, pp. 4127–4140. [Online]. Available:
https://doi.org/10.18653/v1/D19-1423

[54] P. Huang, R. Stanforth, J. Welbl, C. Dyer, D. Yogatama, S. Gowal,
K. Dvijotham, and P. Kohli, “Achieving verified robustness
to symbol substitutions via interval bound propagation,” in
Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP 2019),
Hong Kong, China, 2019, pp. 4081–4091. [Online]. Available:
https://doi.org/10.18653/v1/D19-1419

[55] Y. Zhang, A. Albarghouthi, and L. D’Antoni, “Robustness to
programmable string transformations via augmented abstract
training,” in Proceedings of the 37th International Conference on
Machine Learning (ICML 2020), ser. Proceedings of Machine
Learning Research, vol. 119, 2020, pp. 11 023–11 032. [Online].
Available: http://proceedings.mlr.press/v119/zhang20b.html

[56] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. A. Mann, and P. Kohli, “On the effectiveness of
interval bound propagation for training verifiably robust models,”
CoRR, 2018. [Online]. Available: http://arxiv.org/abs/1810.12715

[57] I. Y. Chen, F. D. Johansson, and D. A. Sontag, “Why
is my classifier discriminatory?” in Advances in Neural
Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018 (NeurIPS 2018),
Montréal, Canada, 2018, pp. 3543–3554. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/3327144.3327272

[58] A. Albarghouthi and S. Vinitsky, “Fairness-aware programming,”
in Proceedings of the Conference on Fairness, Accountability, and
Transparency (FAT* 2019), Atlanta, GA, USA, 2019, pp. 211–219.
[Online]. Available: https://doi.org/10.1145/3287560.3287588

[59] P. Massart, “Concentration inequalities and model selection,”
2007.

[60] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Publications of the American Statistical
Association, vol. 58, no. 301, pp. 13–30, 1963. [Online]. Available:
https://doi.org/10.1080/01621459.1963.10500830

[61] D. Hovy and S. L. Spruit, “The social impact of natural
language processing,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics

20

(ACL 2016), Berlin, Germany, 2016. [Online]. Available:
https://doi.org/10.18653/v1/p16-2096

[62] R. Tatman, “Gender and dialect bias in youtube’s automatic
captions,” in Proceedings of the First ACL Workshop on Ethics
in Natural Language Processing, Valencia, Spain, 2017, pp. 53–59.
[Online]. Available: https://doi.org/10.18653/v1/w17-1606

[63] T. Bolukbasi, K. Chang, J. Y. Zou, V. Saligrama, and
A. T. Kalai, “Man is to computer programmer as
woman is to homemaker? debiasing word embeddings,”
in Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems
2016 (NeurIPS 2016), Barcelona, Spain, 2016, pp. 4349–4357.
[Online]. Available: http://papers.nips.cc/paper/6228-man-is-
to-computer-programmer-as-woman-is-to-homemaker-debiasing-
word-embeddings

Peixin Zhang is currently a Ph.D. candidate
studying at the College of Computer Science
and Technology, Zhejiang University, China. He
received his bachelor’s degree in Software En-
gineering from Zhejiang University in 2016. He
was a visiting student at Singapore University of
Technology and Design in 2017, and Singapore
Management University during 2019-2020. His
research interests include software engineering
and artificial intelligence, especially software en-
gineering for artificial intelligence and software

testing.

Jingyi Wang is currently a tenure-track assis-
tant professor at the College of Control Science
and Engineering, Zhejiang University, China. He
received his Ph.D. from Singapore University
of Technology and Design in 2018, and his
bachelor’s degree in Information Engineering
from Xi’an Jiaotong University in 2013. He was a
research fellow at the School of Computing, Na-
tional University of Singapore during 2019-2020
and at Information Systems Technology and De-
sign Pillar, Singapore University of Technology

and Design during 2018-2019. His research interests include formal
methods, software engineering, cyber-security and machine learning.

Jun Sun is currently a tenured associate profes-
sor at the School of Information Systems, Singa-
pore Management University. He received bach-
elor’s and Ph.D. degrees in computing science
from the National University of Singapore (NUS)
in 2002 and 2006, respectively. From 2010 to
2019, he was an assistant/associate professor
at the Singapore University of Technology and
Design. He was a visiting scholar at MIT from
2011 to 2012. His research focuses on software
engineering, formal methods, program analysis,

and cyber-security. He is the co-founder of the PAT model checker.

Xinyu Wang is currently a professor in the Col-
lege of Computer Science and Technology, Zhe-
jiang University, China. He received his bach-
elor’s and Ph.D. degrees in Computer Science
from Zhejiang University in 2002 and 2007, re-
spectively. His research interests include real-
time intelligent data processing, artificial intelli-
gence, and software engineering.

Guoliang Dong received his bachelor’s de-
gree in Software Engineering from Northwest-
ern Polytechnical University, China, in 2016. He
is currently a Ph.D. candidate studying in the
College of Computer Science and Technology,
Zhejiang University. He was a visiting student at
Singapore Management University during 2019-
2020. His research interests include software
engineering and artificial intelligence, especially
software engineering for artificial intelligence.

Xingen Wang is currently a research assistant
at the College of Computer Science and Tech-
nology, Zhejiang University, China. He received
the bachelor’s and Ph.D. degrees in Computer
Science from Zhejiang University in 2005 and
2013, respectively. His research interests in-
clude distributed computing and software perfor-
mance.

Ting Dai is a senior researcher in the Trustwor-
thy AI Lab of Shield Lab at Huawei Singapore
Research Center. He received his Ph.D. degree
in Computer Science from National University of
Singapore in 2015, and his bachelor’s degree
in Computer Science from Tsinghua University
in 2009. His research area is in system and
software security, and security in emerging plat-
forms.

Jin Song Dong received the bachelor’s and
Ph.D. degrees in computing from the University
of Queensland, Australia, in 1992 and 1996,
respectively. From 1995 to 1998, he was a re-
search scientist at CSIRO in Australia. Since
1998, he has been at the School of Computing
of the National University of Singapore, where
he is currently a full professor. He is on the
editorial board of ACM Transactions on Software
Engineering and Methodology, Formal Aspects
of Computing and Innovations in Systems and

Software Engineering. His research interests include formal methods,
software engineering, pervasive computing, and semantic technologies.

