Best Paper Awards (ICML)

1999-2018

Posted by pxzhang on January 1, 2019
Year Title Authors
2018 Delayed Impact of Fair Machine Learning Lydia T. Liu, University of California Berkeley
Sarah Dean, University of California Berkeley
Esther Rolf, University of California Berkeley
Max Simchowitz, University of California Berkeley
Moritz Hardt, University of California Berkeley
2018 Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples Anish Athalye, Massachusetts Institute of Technology
Nicholas Carlini, University of California Berkeley
David Wagner, University of California Berkeley
2017 Understanding Black-box Predictions via Influence Functions Pang Wei Koh & Percy Liang, Stanford University
2016 Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling Christopher De Sa, Stanford University
Chris Re, Stanford University
Kunle Olukotun, Stanford University
Pixel Recurrent Neural Networks
Aaron Van den Oord, Google
Nal Kalchbrenner, Google
Koray Kavukcuoglu, Google
2016 Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang, Google
Tom Schaul, Google
Matteo Hessel, Google
Hado van Hasselt, Google
Marc Lanctot, Google
Nando de Freitas, University of Oxford
2015 A Nearly-Linear Time Framework for Graph-Structured Sparsity Chinmay Hegde, Massachusetts Institute of Technology
Piotr Indyk, Massachusetts Institute of Technology
Ludwig Schmid, Massachusetts Institute of Technology
2015 Optimal and Adaptive Algorithms for Online Boosting Alina Beygelzimer, Yahoo! Research
Satyen Kale, Yahoo! Research
Haipeng Luo, Princeton University
2014 Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis Jian Tang, Peking University
Zhaoshi Meng, University of Michigan
XuanLong Nguyen, University of Michigan
Qiaozhu Mei, University of Michigan
Ming Zhang, Peking University
2013 Vanishing Component Analysis Roi Livni, The Hebrew University of Jerusalum
David Lehavi, Hewlett-Packard Labs
Sagi Schein, Hewlett-Packard Labs
Hila Nachlieli, Hewlett-Packard Labs
Shai Shalev Shwartz, The Hebrew University of Jerusalum
Amir Globerson, The Hebrew University of Jerusalum
2013 Fast Semidifferential-based Submodular Function Optimization Rishabh Iyer, University of Washington
Stefanie Jegelka, University of California Berkeley
Jeff Bilmes, University of Washington
2012 Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring Sungjin Ahn, University of California Irvine
Anoop Korattikara, University of California Irvine
Max Welling, University of California Irvine
2011 Computational Rationalization: The Inverse Equilibrium Problem Kevin Waugh, Carnegie Mellon University
Brian Ziebart, Carnegie Mellon University
Drew Bagnell, Carnegie Mellon University
2010 Hilbert Space Embeddings of Hidden Markov Models Le Song, Carnegie Mellon University
Byron Boots, Carnegie Mellon University
Sajid M. Siddiqi, Google
Geoffrey Gordon, Carnegie Mellon University
Alex Smola, Yahoo! Research
2009 Structure preserving embedding Blake Shaw & Tony Jebara, Columbia University
2008 SVM Optimization: Inverse Dependence on Training Set Size Shai Shalev-Shwartz & Nathan Srebro, Toyota Technological Institute at Chicago
2007 Information-theoretic metric learning Jason V. Davis, University of Texas at Austin
Brian Kulis, University of Texas at Austin
Prateek Jain, University of Texas at Austin
Suvrit Sra, University of Texas at Austin
Inderjit S. Dhillon, University of Texas at Austin
2006 Trading convexity for scalability Ronan Collobert, NEC Labs America
Fabian Sinz, NEC Labs America
Jason Weston, NEC Labs America
Léon Bottou, NEC Labs America
2005 A support vector method for multivariate performance measures Thorsten Joachims, Cornell University
1999 Least-Squares Temporal Difference Learning Justin A. Boyan, NASA Ames Research Center